
1255

0022-4715/02/0900-1255/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 108, Nos. 5/6, September 2002 (© 2002)

Large Deviations for Probabilistic Cellular Automata

Dedicated to D. Ruelle and Ya. Sinai.

A. Eizenberg1 and Y. Kifer2

1 Jerusalem College of Engineering, Jerusalem, Israel; e-mail: alexe@math.huji.ac.il
2 Institute of Mathematics, The Hebrew University, Jerusalem, Israel; e-mail: kifer@math.
huji.ac.il

Received November 19, 2001; accepted April 23, 2002

We consider a generalized model of a probabilistic cellular automata described
by a Markov chain on an infinite dimensional space and derive certain large
deviations bounds for corresponding occupational measures.
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1. INTRODUCTION

Let Xt, t ¥ Z+ be a time homogeneous Markov chain with a metric phase
space C. Consider the sequence of occupational measures

zT=
1
T

C
T−1

t=0
d(Xt), T ¥ Z+ (1.1)

where d(x) is the unit measure concentrated at a point x ¥ C. The study of
large deviations for the occupational distributions of Markov chains has
been initiated by Donsker and Varadhan in ref. 1 and continued by many
researches (see, for instance, refs. 2–4 and references there). Upper bounds
of large deviations have been established for a general class of Feller pro-
cesses on compacts by Donsker and Varadhan in refs. 5 and 6 without any
additional assumptions (see also Remark 2.4 later). However, lower bounds
obtained so far were based on rather strong assumptions, such as, for
instance, the existence of continuous densities for transition probabilities
of corresponding Markov chains or, more generally, certain uniformity
conditions formulated in ref. 3, or irreducibility conditions formulated



in ref. 7. Under such conditions, usually, lower and upper bounds are
uniform, or at least independent of the initial conditions, and, moreover,
have the same rate functionals so they are optimal for the corresponding
class of processes.
Unfortunately, such assumptions, usually, are not satisfied for a large

class of Markov chains, arising, for instance, in statistical mechanics. Markov
chains of this type, usually called now Probabilistic Cellular Automata (PCA),
were introduced more than 30 years ago by Stavskaja and Pjatetskii-Shapiro(8)

as a model for a neuron network and byWasserstein(9) as a model describing a
large system of automata. Later they where studied by Dawson(1, 10) and more
recently these models were considered by Maes and Shlosman.(11) Their space-
time evolution was investigated in Lebowitz et al. (12) which leads to a different
type of problems and methods since one has to deal here with more restricted
classes of measures which are not only time but also space shift invariant.
Usually, PCA is described as a Markov chain Xt evolving on a phase

space C=SZd where S is a finite (spin) set. For c ¥ C, i
¯
¥ Zd denote by ci

¯the i
¯
coordinate of c. For any B … Zd denote by pB the natural projection

from SZd to SB, and by TB the s-algebra of subsets of C generated by the
coordinate function ci

¯
, i
¯
¥ B. The transition probability function of Xt is

called synchronous if

P(x, {c ¥ C : pB(c)=v})=D
i
¯
¥ B
P(x, {c ¥ C : ci

¯
=vi

¯
}) (1.2)

for any x ¥ C, B … Zd, v ¥ SB and it is called local if there exists K > 0 such
that the transition function P( · , {c ¥ C : ci

¯
=s}) is TN(i) measurable for any

fixed i
¯
¥ Zd, s ¥ S, where

N(i
¯
)={j

¯
¥ Zd : ||i

¯
−j
¯
|| [K}

and ||z
¯
|| :=max1 [ i [ d |zi | for z¯

=(z1,..., zd) ¥ Zd.
In this paper we deal with somewhat more general Markov chains for

which we derive certain large deviations bounds for occupational measures,
though our lower and upper bounds come with different rate functionals.
More precisely, we will obtain some lower large deviations bounds
depending on the initial distribution of the Markov chain. One of the main
features of the approach presented in this paper is to consider first the
empirical pair distribution, and then to apply the corresponding results to
the occupational measures by means of the contraction principle. Our
interest in estimates depending on the initial distribution is motivated by
the fact that, in some cases, the uniform lower bounds given by Donsker–
Varadhan’s action functional are not valid. This phenomenon was demon-
strated, for instance, in Example 1 from ref. 13 for a Markov chain with
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two states one of which is absorbing. Taking an infinite product of such
Markov chains we obtain an example in the form of a PCA (see Example 2
in Section 4) though being somewhat degenerate it is not quite satisfactory
but we believe that more interesting examples of this sort can be constructed.
Namely, in general, uniform upper bounds are optimal only if we want

a rate functional independent of an initial distribution but lower bound
rate functionals must depend on initial distributions unless some irreduci-
bility conditions hold true.
Let us describe the general structure of the paper. In Section 2 we

will formulate our main assumptions concerning Markov chains and will
introduce our basic notations while proving some preliminary results. We
also formulate in Section 2 upper bounds which can be derived from the
general third level upper bounds obtained by Donsker and Varadhan for
Feller processes on compacts. In order to make the paper more self-con-
tained we will provide an independent proof of the upper bounds for the
empirical pair distribution in Section 5 (describing the action functional
by means of Kullback–Liebler information in the framework of our special
conditions). In Section 3 we will formulate and prove the main results of
this paper concerning the lower bounds, and in Section 4 we show that the
traditional models of Probabilistic Cellular Automata fall in our general
framework.

2. THE GENERAL SET-UP AND THE DONSKER–VARADHAN

ACTION FUNCTIONAL

We assume that the following conditions are satisfied

H1. The process Xt, t ¥ Z+, is a time homogeneous Markov chain on
a phase space (C, B) , where C is a compact metric space, and B is the
Borel s-algebra of C;

H2. There exists a sequence of finite open partitions Lk of C, k \ 1,
such that Lk O L

k+1
for each k \ 1, and maxA ¥ Lk

diam AQ 0 as kQ. (in
particular B is the minimal s-algebra generated by partitions Lk, k \ 1);

H3. For any k \ 1, x ¥ C, B ¥ Lk,

P(x, B) :=Px (X1 ¥ B) > 0; (2.1)

H4. For any k \ 1, A ¥ Lk, B ¥ L
k+1
, x, y ¥ B,

P(x, A)=P(y, A), (2.2)

and so we can define P(B, A)=P(x, A) for each x ¥ B.
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Remark 2.1. Observe, that conditions H1–H4 imply that the
process Xt satisfies the Feller property.

Remark 2.2. Condition H2 enables us to view C as a space of
sequences consisting of integers (spins), but this representation will not lead
usually to a synchronous interactions and such modification is not helpful.
On the other hand, we will see in Section 4 that traditional symbolic
models of PCA fit into our set up. Furthemore, notice that due to H2 each
set A ¥ Lk is both open and closed, which enables us to take advantage of
the fact that its indicator is continuous.
Without loss of generality, we can consider the sample space (W, T),

where

W=CZ
+
, T=BZ

+
(2.3)

and describe the random variables Xt: W Q C for any t ¥ Z+ by the formula

Xt(w)=wt (2.4)

where w=(w0, w1,..., wk,...) ¥ W. Denote by M0(C) and M0(C×C) the
sets of the probability Borel measures defined on C and C×C, respec-
tively, both equiped with the weak topology (which is the only topology we
consider here on spaces of measures). For any m ¥M0(C×C) the left and
right marginal measures mL, mR ¥M0(C) are defined by mL(A)=m(A×C)
and mR(A)=m(C×A). Next, we will introduce the set of the measures with
symmetrical marginal distributions

MS={m ¥M0(C×C) : mL=mR}. (2.5)

Furthermore, for any n ¥M0(C) we define nP ¥M0(C×C) by the
formula

nP(B×A)=F
B
P(x, A) n(dx), (2.6)

and for any m ¥M0(C×C) we set mP=(mL)P.
For any T ¥ Z+ we will define the empirical pair distribution YT:

W QM(C×C) by the formula

YT=
1
T

C
T−1

t=0
d(Xt, Xt+1) (2.7)

where d(x, y) is the unit measure concentrated at a point (x, y) ¥ C×C.
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Clearly

(YT)L=zT, (2.8)

where, recall, the occupational measures zT: W QM(C) are defined by (1.1).

Remark 2.3. We find it convenient to discuss large deviations
mainly on the level of the empirical pair distributions YT. Observe that,
due to (2.8), the corresponding large deviation bounds for the occupational
measures zT follow by the contraction principle (see, for instance, ref. 3). In
particular, we are going to reformulate the well known Donsker–Varadhan
upper bounds in accordance with this approach, but first we would like to
point out that the only measures relevant to the asymptotitcs of YT are the
measures with symmetrical marginal distributions, as it follows by the next
simple, but important fact.

Proposition 2.1. For any m ¥M0(C×C) such that m ¨MS there
exist an open with respect to the weak topology neighborhood U(m) of m

and an integer T(m) large enough such that

Px{YT ¥ U(m)}=0 (2.9)

for each T \ T(m), x ¥ C. Moreover, for any compact K …M0(C×C)0MS,

lim
TQ.

ln Px{YT ¥K}
T

=−. (2.10)

uniformly with respect to x ¥ C.

Proof. Observe that if m ¨MS, then there exists f ¥ C(C) such that
mL(f) ] mR(f), where, as usual, C(C) denotes the set of all real-valued
continuous functions defined on C. On the other hand, for each T > 0 and
for each sample path of our Markov chain,

|(YT)L (f)−(YT)R(f)| [
2
T
maxC |f|.

The continuation of the proof is straightforward. L

Now we are in a position to introduce the action functional for the
empirical pair distributions YT. Namely, set

Ĩ(m)=˛D(m || m
P) for m ¥MS

., otherwise.
(2.11)
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Here D(m || mP) is the divergence of m with respect to mP (see ref. 14),
which is also known as the relative entropy or the Kullback–Leibler
information in different applications.
Recall (see ref. 14, Lemma 5.2.3), that if m ° mP, then

D(m || mP)=F
C×C

r ln r dmP=F
C×C
ln r dm (2.12)

where r is the Radon–Nikodym derivative of m with respect to mP; other-
wise (if m is not absolutely continuous with respect to mP)

D(m || mP)=.. (2.13)

As it was pointed out in the Introduction, the results formulated in
Theorem 1 below can be derived from Donsker and Varadhan estimates
for general Feller processes on compacts (see Remark 2.4 just following
Corollary 2.2).

Theorem 1. (a) Ĩ: M0(C×C)Q [0,.] is a non-negative convex
lower semi-continuous functional.

(b) For any closed with respect to the weak topology K ıM0(C×C),

lim sup
TQ.

ln Px{YT ¥K}
T

[ − inf{Ĩ(m): m ¥K} (2.14)

uniformly with respect to x ¥ C.

(c) Let m ¥MS. Then

Ĩ(m)=0 (2.15)

if and only if m=mP. Moreover, if (2.15) holds true, then mL is an invariant
measure for the kernel P(x, · ).

Next, according to the contraction principle (see ref. 3), we obtain
immediately corresponding upper bounds for the occupational measures zT
defining the action functional I: M0(C)Q [0,.] for any n ¥M0(C) by the
formula

I(n)=min{Ĩ(m): n=mL, m ¥MS} (2.16)

(if {m ¥MS : n=mL}=f, we set I(n)=.).
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Corollary 2.2. (a) I: M0(C)Q [0,.] is a convex lower semi-con-
tinuous functional.

(b) For any closed with respect to the weak topology subset K of
M(C)

lim sup
TQ.

ln Px{zT ¥K}
T

[ − inf
n ¥K
I(n) (2.17)

uniformly with respect to x ¥ C.

(c) I(n)=0 if and only if n ¥M0(C) is an invariant measure for
P(x, · ). Moreover, let MI(C) be set of all invariant measures for the
Markov kernel P( · , · ). Then for any open with respect to the weak topol-
ogy neighborhood U of MI(C) there exist constants C1(U), C2(U) such
that

Px{zT ¨ U} [ C1(U) exp(−TC2(U)) (2.18)

for any T \ 0, x ¥ C.

Remark 2.4. Notice that the upper bounds are proved by Donsker
and Varadhan for Feller processes on certain even more general class of
phase spaces than just compacts, but this fact is irrelevant for our set-up.
Recall also that the action functional Ĩ( · ) appears in a different form in
the original works of Donsker and Varadhan (see ref. 5, p. 395, formula
(2.4)). Moreover, I(n) is also given in a different form (see ref. 5, p. 394,
formula (2.1)). The equivalence of different forms of action functionals
follows from general properties of the relative entropy. The results of ref. 5
are presented on the level of occupational measures only (similar to the
corollary above, although in a little different form). On the other hand,
since the estimates of ref. 6 are given on the third level, one can derive from
there the upper estimates for the empirical pair measure given in Theorem 1
earlier by the contraction principle. Note that the estimates of ref. 6 are
formulated for the continuous time Feller processes, but it is not difficult
to reformulate them for the discrete time case. It turns out, however, that
under the assumptions H1–H4 a simpler proof of Theorem 1 can be
provided independently of the Donsker and Varadhan classical results. The
authors found it reasonable to include this simplified proof in Section 5.

Until now we discussed the result connected with the upper bounds,
but the following proposition is intended to prepare the ground for our
main results concerning the estimates from below, although it has some
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value of its own, claiming that the action functional I( · ) is finite only for
measures n ¥M0(C) having some very special properties.

Proposition 2.3. Let m ¥MS be such that Ĩ(m) <.. Then there
exist a Radon–Nikodym derivative r= dm

dmP
¥ L1(mP) and a Markov kernel

G: C×BQ [0, 1] such that for mL-almost any x ¥ C and for any A ¥B,

G(x, A)=F
A

r(x, y) P(x, dy) (2.19)

and

m=(mL)G (2.20)

and, moreover, mL is an invariant measure with respect to the kernel G.

Proof. The existence of the Radon–Nikodym derivative r ¥ L1(mP)
follows immediately by (2.13), and moreover, by the definition of mP and
by Fubini’s Theorem, for any A, B ¥B,

m(B×A)=F
B×A

r(x, y) mP(dx×dy)=F
B
F
A

r(x, y) P(x, dy) mL(dx)
(2.21)

In particular, setting A=C, for each B ¥B we have

mL(B)=m(B×C)=F
B
F
C

r(x, y) P(x, dy) mL(dx). (2.22)

Observe, that the last formula yields immediately that there exists a mea-
surable set C0 … C such that mL(C0)=1 and for any x ¥ C0,

F
C

r(x, y) P(x, dy)=1. (2.23)

Therefore, for any x ¥ C0 we can define a new probability measure G(x, · )
using the formula (2.19). To complete the definition of the Markov kernel G,
we define G(x, · ) to be an arbitrary probability Borel measure on C for any
x ¥ C0C0 (in the spirit of ref. 5, p. 401). Now we can rewrite (2.21) in the
form

m(B×A)=F
B
G(x, A) mL(dx) (2.24)
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proving (2.20). Next, set in (2.24) B=C, then by (2.5) for any A ¥B,

mL(A)=mR(A)=m(C×A)=F
C

G(x, A) mL(dx)

proving the fact that mL is invariant with respect to the kernel G. L

Corollary 2.4. If I(n) <., then there exist a function r ¥ L1(nP)
and a Markov kernel G: C×BQ [0, 1] such that n is an invariant measure
with respect to G( · , · ) and

G(x, A)=F
A

r(x, y) P(x, dy)

for n- almost any x ¥ C, A ¥B.

Proof. Follows immediately by the last proposition together with the
formula (2.16). L

3. MAIN RESULTS: THE LOWER BOUNDS

Let n0 ¥M0(C) be a given initial distribution, and let U be an open
subset of M0(C×C). The main purpose of this section is to estimate the
probability Pn0{YT ¥ U} from below, or, more precisely, to obtain some
estimates of form

lim inf
TQ.

1
T
ln Pn0{YT ¥ U} \ −K(U, n0) for some K(U, n0) \ 0.

In contrast with the classical large deviation theory, our estimates depend
on the initial distribution n0 which is not surprising since we assume no
irreducibility conditions (cf. refs. 7 and 13). In accordance with this fact,
we will treat the measure Pn0 as the reference measure throughout this
section.
Recall (see ref. 14, Section 2.3), that for any two measures m1, m2 ¥

M0(C) and each finite Borel partition D={Q1, Q2,..., Qn} of C the relative
entropy of the partition D with measure m1 with respect to m2 is defined by
the formula

Hm1 || m2 (D)=C
n

i=1
m1(Qi) ln

m1(Qi)
m2(Qi)

(3.1)
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provided m1(Qi)=0 whenever m2(Qi)=0, and setting Hm1 || m2 (D)=.,
otherwise.
In addition to the Donsker–Varadhan functionals Ĩ and I (see (2.11)

and (2.16)) we consider the family of functionals Sn0 : M0(C)Q [0,.] (for
any given initial distribution n0) defined by the formula

Sn0 (n)=lim supnQ.

1
n
Hn || n0 (Ln) (3.2)

for any n ¥M0(C) (with Ln satisfying H2–H4). Now we can introduce the
action functionals Kn0 : M(C×C)Q [0,.) by

Kn0 (m)=Sn0 (mL)+Ĩ(m) (3.3)

with Ĩ given by (2.11).
Let n ¥M0(C) be such that I(n) <.. Then, by Corollary 2.4, there

exists a Markov kernel G(x, · ) such that n is an invariant measure with
respect to G(x, · ). Set

PGn=n é G, (3.4)

i.e., PGn is the Borel probability measure on the measure space (W, T)
induced by the kernel G under the initial distribution n. Introduce, as usual,
the one-sided time-shift transformation h: W Q W by the formula h(w)=
(w1, w2,..., wk,...) for any (w0, w1,..., wk,...) ¥ W. It is known that PGn is
ergodic with respect to the transformation h if and only if the initial
measure n is ergodic with respect to the kernel G( · , · ) (see ref. 15).
We can now state our main result.

Theorem 2. Let U be an open with respect to the weak topology
neighborhood of m ¥MS such that Ĩ(m) <. and G( · , · ) be the corre-
sponding Markov kernel defined in Proposition 2.3. If mL is ergodic with
respect to G( · , · ), then

lim inf
TQ.

1
T
ln Pn0{YT ¥ U} \ −Kn0 (m). (3.5)

Proof. For the convenience of the reader we will divide the proof
into four steps.
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Step 1. For any k \ 1, b > 0 define a neighborhood Ubk of m by the
following formula

Ubk= 3
B, A ¥ Lk

{mŒ ¥M0 : |mŒ(B×A)−m(B×A)| < b}.

In view of Assumption H2, it is clear that we can choose k large enough
and b > 0 small enough such that

U0 :=U
b
k … U. (3.6)

Next, for any A, B ¥ Lk define the indicator qB, A: W Q R by the formula

qB, A(w)=qB(w0) qA(w1)

for any w=(w0, w1,..., wt,...). Recall (see Remark 2.2) that due to H2 the
indicators qB, A are continuous and, moreover, the sets U

b
k are open with

respect to the weak topology. Furthemore, for each T \ 1 and w ¥ W,

YT(B×A)=
1
T

C
T−1

t=0
qB, A(h t(w)), (3.7)

where h is the time-shift transformation introduced above. Set n=mL, then
by (3.4) and (2.20),

EPGn qB, A=P
G
n (X0 ¥ B, X1 ¥ A)=F

B
G(x, A) n(dx)=m(B×A). (3.8)

Now, by (3.7), (3.8), the definition of U0=U
b
k and the ergodic theorem one

has

lim
TQ.

PGn {YT ¥ U0}=1 (3.9)

(since PGn is ergodic with respect to the shift h).

Step 2. One of the main ideas of this proof is to use (3.9) presenting
it by means of the measure Pn instead of P

G
n . To do this, denote by TT the

s-algebra generated by the random variables X0, X1,..., XT for a given
T \ 1. Then, by (3.4) and (2.19), there exists a Radon–Nikodym derivative

DT=
dPGn
dPn
:
TT

=D
T−1

t=0
r(Xt, Xt+1). (3.10)
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Denote WT={w: DT > 0} and W.=4T \ 1 WT. Clearly

PGn (W.)=1 (3.11)

and, moreover, for each event A ¥ TT

F
W. 5A

D−1T (w) P
G
n (dw)=Pn(W. 5A). (3.12)

On the other hand, for each w ¥ W. we can rewrite (3.10) in the form

DT=exp 1 C
T−1

t=0
d p h t2 (3.13)

where d: W Q R is defined by the formula

d(w)=ln r(w0, w1) (3.14)

for each w=(w0, w1,..., wt,...) ¥ W (if w ¨ W., set d=0, for instance).
Moreover, by Proposition 2.3, (3.11), (3.4), (2.12) and (2.11),

EPGn d=F
C

F
C

ln r(x, y) G(x, dy) n(dx)=Em ln r=D(m || mP)=Ĩ(m) <..
(3.15)

In particular, d ¥ L1(P
G
n ). Next, for a given d > 0 introduce the event

AT, d={DT [ exp(T(Ĩ(m)+d))}. (3.16)

Then, by (3.11), (3.13), (3.15) and the ergodic theorem,

lim
TQ.

PGn (AT, d)=1. (3.17)

Therefore, (3.9) together with (3.17) imply that for any given a, d > 0,

PGn ({YT ¥ U0} 5AT, d) \ 1−a (3.18)

provided T \ T1(a, d).

Step 3. Observe that the statement of Theorem 2 is given in terms
of the reference measure Pn0 ; therefore, we should find a way to perform
the change of measure transformation. Since, generally speaking, Pn is not
absolutely continuous with respect to Pn0 , we should restrict our consider-
ation to some suitable s-algebras. Namely, for a given integer T \ 1, and
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for each sequence of sets A
¯
=(A0, A1,..., AT) ¥ LT+1k (with k \ 1 chosen in

(3.6)) we define, as usual, the cylindrical subset W(A
¯
)={w ¥ W : wi ¥ Ai,

0 [ i [ T}. The partition {W(A
¯
): A
¯
¥ LT+1k } generates the finite field BT

k .
Clearly, by the definitions of YT and of U0 one has

{YT ¥ U0} ¥BT
k . (3.19)

We will need, however, to use some more refined partition of W. Namely,
for a given finite sequence of sets B

¯
¥ Lk+T×Lk+T−1× · · · ×Lk+1×Lk (i.e.,

B
¯
=(B0, B1,..., BT) is such that Bi ¥ Lk+T−i, 0 [ i [ T) set

W̃(B
¯
)={w ¥ W : wi ¥ Bi, 0 [ i [ T} (3.20)

and consider the finite field B̃T
k generated by the partition of W formed

by the sets W̃(B
¯
) for all B

¯
¥ Lk+T×Lk+T−1× · · · ×Lk+1×Lk. Obviously,

B̃T
k ‡BT

k , and so by (3.19),

{YT ¥ U0} ¥ B̃T
k . (3.21)

On the other hand, by (H4) for any B
¯
¥ Lk+T×Lk+T−1× · · · ×Lk+1×Lk,

Pn0 (W(B¯
))=n0(BT+k) D

T−1

t=0
P(Bt, Bt+1)

and

Pn(W(B¯
))=n(BT+k) D

T−1

t=0
P(Bt, Bt+1),

and, therefore, for any w ¥ W,

rT=
dPn
dPn0
:
B̃
T
k

=
dn
dn0
:
LT+k

pX0 (3.22)

(we write just rT disregarding k, since k is constant throughout the present
proof ). Recall that one can derive some estimates concerning dn

dn0
|Lk+T by

means of the corresponding relative entropy (see ref. 16, Proposition 4.4).
Namely, for each C > 0,

n 3x ¥ C :
dn
dn0
:
Lk+T

(x) \ eC4 [ C−1(Hn || n0 (Lk+T)+log 2). (3.23)
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For a given d > 0, T \ 1 set

C(d, T)=T(Sn0 (n)+d)

and introduce the event

FT, d={w ¥ W : rT(w) < eC(d, T)} ¥ B̃T
k . (3.24)

Since n is the marginal distribution of PGn corresponding to the component
w0=X0(w) for w ¥ W, we have by (3.22), (3.23), (3.24) and (3.2),

PGn (W0FT, d)=n 3 dn
dn0
:
Lk+T

\ exp(T(Sn0 (n)+d))4

[ 1T+k
T
2Hn || n0 (Lk+T)+log 2

k+T
1

d+Sn0 (n)
[ 1−g, (3.25)

where g= d

2(Sn0 (n)+d)
> 0 provided T \ T2(d). Choose a=a(d)=g

2 in (3.18)
and denote

A2 T, d=AT, d 5 {YT ¥ U0} 5 FT, d. (3.26)

Then by (3.18) and (3.25),

PGn (A2 T, d) \
g

2
, (3.27)

for any T \ T3(d)=max(T1(a, d), T2(d)) (recall that g > 0 is independent
of T).

Step 4. To complete the proof, we put A=A2 T, d in (3.12), then by
(3.26), (3.27), and (3.16) for each T \ T3(d),

Pn({YT ¥ U0} 5 FT, d) \ Pn(A2 T, d 5 W.)=F
W. 5A2 T, d

D−1T (w) P
G
n (dw)

\ exp(−T(Ĩ(m)+d)) PGn (A2 T, d)

\
g

2
exp(−T(Ĩ(m))+d)). (3.28)
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Now, by (3.21), (3.22), (3.24), and (3.28) we obtain for any d > 0 and
T \ T3(d),

Pn0{YT ¥ U0} \ Pn0 ({YT ¥ U0} 5 FT, d)

\ F
{YT ¥ U0} 5 FT, d

e−C(d, T)rT(w) Pn0 (dw)

=e−C(d, T)Pn({YT ¥ U0} 5 FT, d)

\
g

2
exp(−T(Sn0 (n)+Ĩ(m)+2d)) (3.29)

which together with (3.6) and (3.3) completes the proof of the theorem. L

Denote by ME(C×C) the set of all measures m ¥MS such that
Ĩ(m) <. and mL is ergodic with respect to the corresponding Markov
kernel G( · , · ) introduced in Proposition 2.3. Now the following result is an
immediate conclusion of Theorem 2.

Corollary 3.1. For any open with respect to the weak topology set
U …M0(C×C) and any initial distribution n0 ¥M0(C),

lim inf
TQ.

1
T
ln Pn0{YT ¥ U} \ − inf

n ¥ U 5ME(C×C)
Kn0 (n)

provided U 5ME(C×C) ] f.

It is especially interesting to estimate from below the rate of conver-
gence to zero of Pn0{tT ¥ U(n)} where n0 and n are two different ergodic
invariant measures of P(x, · ) and U(n) is some neighborhood of n such that
n0 ¨ U(n). The following (formulated in a little more general way) result
partially answers this question.

Corollary 3.2. Let n be an ergodic invariant measure with respect
to the kernel P( · , · ) satisfying the conditions H1–H4. Then for any initial
distribution n0 and for any open with respect to the weak topology neigh-
borhood U of n we have

Pn0{tT ¥ U} \ exp(−(Sn0 (n)+d) T)

provided T \ T(d).

Proof. Let m=nP, then Ĩ(m)=I(n)=0. Now due to (2.8), we use the
contraction principle. L
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4. THE PROBABILISTIC CELLULAR AUTOMATA

The purpose of this section is to demonstrate the connection between
our general assumptions and traditional PCA models considered, for
instance, in refs. 1, 10, 11, and 17. Namely, let S be a finite set. Set C=SZd

for some d \ 1. For each finite F … Zd let pF: SZd
Q SF be the natural

projection. For any j ¥ SF set

AFj={c ¥ C : pF(c)=j}. (4.1)

Clearly, for any finite F … Zd the set {AFj : j ¥ SF} is a finite partition of C.
Moreover, the family of sets AFj for all possible F and j ¥ SF serves as a
sub-base for the standard product discrete topology on C metrizable by the
usual way as described below. Namely, for any z

¯
=(z1,..., zd) ¥ Zd intro-

duce the following norm ||z
¯
||=max1 [ i [ d |zi |. Then the product topology on

C is induced by the metric

r(c, cŒ)= C
z
¯
¥ Zd
2−||z¯ ||r̃(c(z

¯
), cŒ(z
¯
)), c, cŒ ¥ C, (4.2)

where r̃(s1, s2)=0 if s1=s2 and r̃(s1, s2)=1 otherwise, for any s1, s2 ¥ S
(considering a configuration c ¥ C as a function c: ZdQ S). It is well
known that C equipped with the metric r is a compact. We assume that a
C-valued Markov chain Xt, t ¥ Z+, satisfies the following conditions

(A1) For any z
¯
¥ Zd a finite neighborhood N(z

¯
) … Zd of z

¯
is defined

together with a local transition kernel Pz¯ : SN(z¯ )×SQ [0, 1]. More preci-
sely, for any g ¥ SN(z¯ ) a probability distribution Pz¯(g, · ) is defined on S.
Recall that the elements of N(z

¯
) are called the neighbors of z

¯
¥ Zd;

(A2) The transition probability kernel P( · , · ) of Xt has the following
property: for each x ¥ C, each finite F … Zd, and each j ¥ SF,

P(x, AFj )=D
z
¯
¥ F

Pz¯(pN(z
¯
)(x), j(z¯

)); (4.3)

(A3) There exists an integer n0 \ 1 such that for each z¯
¥ Zd,

N(z
¯
) ı {z
¯
Œ ¥ Zd : ||z

¯
−z
¯
Œ|| [ n0}. (4.4)

Now introduce the set of cubes:

Fk={z¯
¥ Zd : ||z

¯
|| [ kn0}, k \ 1 (4.5)

1270 Eizenberg and Kifer



and define the sequence of partitions

Lk={A
Fk
j : j ¥ SFk}. (4.6)

Clearly, if (A1)–(A3) hold true, then our general assumptions (H1), (H2))
and (H4) are satisfied with the sequence Lk, k \ 1, introduced in (4.6).
Moreover, if Pz¯(g, s) > 0 for any z

¯
¥ Zd, g ¥ SN(z¯ ), and s ¥ S then (H3) is

also satisfied.

Example 1. To be more specific, consider the following simple
example borrowed from refs. 9 and 17. Let d=1, S={0, 1}, that is
C={0, 1}Z. Let N(z)={z+1} for any z ¥ Z. In this case we can write
SN(z)=S, since N(z) consists of one element. For the sake of simplicity, we
will also use the notation pz=p{z}. Suppose that we are given a sequence of
numbers 12 < pz < 1, where z ¥ Z, then we can define the local transition
kernels Pz for any z ¥ Z, s, sŒ ¥ {0, 1} by

Pz(s, sŒ)=˛pz if s=sŒ

1−pz otherwise.
(4.7)

Clearly, the conditions (A1)–(A3) are satisfied in this case, and the
Markov chain Xt is well defined. Let 0 [ r [ 1. Introduce the product
measure nr on C by the formula

nr{c ¥ C : pz(c)=1}=
1
2+(r−

1
2) dz

for each z ¥ Z where dz=<i \ z (2pi−1). It is known that the measure nr
is the invariant measure of Xt (see ref. 9 or ref. 17), and, therefore, by
Corollary 2.2, I(nr)=0. Suppose that d0=<i \ 0 (2 pi−1) > 0. More
precisely, choose a sequence of positive numbers bi, i \ 0, such that
;.

i=0 bi <., and set

pz=
1+e−b|z|

2
. (4.8)

In this case for z ¥ Z, dz=exp(−;i \ z b|i|) which yields d0 > 0 and
limzQ. dz=1. Then, for instance, n1 ] n0, and, moreover, one can derive
by direct calculations that in this case Sn0 (n1) > 0. Therefore, our Corol-
lary 3.2 becomes relevant. Actually, we conjecture that in this case the
upper large deviations bounds are also given by the action functionals
Sn0 ( · ). The following easier but less interesting example seems to support
our approach.
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Example 2. Similarly to the previous example, let d=1, S={0, 1},
C={0, 1}Z. Let N(z)={z} for any z ¥ Z, which, combined with the
condition (4.3), enables us to consider the C-valued Markov chain Xt as
a direct product of infinitely many local S-valued independent Markov
chains indexed by z ¥ Z. As in the previous example, we can write SN(z)=S.
Suppose that we are given a sequence of numbers 0 < pz < 1, where z ¥ Z,
such that

a0= D
. > z > −.

pz > 0, (4.9)

as, for instance, in (4.8). Define the local transition kernels Pz for any z ¥ Z
and s ¥ {0, 1} by

Pz(0, s)=˛pz if s=0

1−pz if s=1
and Pz(1, s)=˛0 if s=0

1 if s=1
(4.10)

(which, actually, means that each local S-valued Markov chain behaves as
in Example 1 of ref. 13). Let c0, c1 ¥ C be such that

c0(z)=0, c1(z)=1

for each z ¥ Z, and denote by n0, n1 the probability measures on C concen-
trated at the points c0, c1, respectively. Using either our formula (2.16)
together with (5.2) and Proposition 5.1 formulated in the next section, or
the original representation of Donsker and Varadhan (see, for instance,
refs. 5, 2 or 3) one can easily verify that

I(n0)=−ln a0 <..

On the other hand, clearly, for any open with respect to the weak topology
neighborhood U of n0 which does not include n1,

Pc1{zT ¥ U}=0, and so lim
TQ.

ln Pc1{zT ¥ U}
T

=−..

Therefore, the Donsker–Varadhan action functional does not provide the
correct lower estimate in this case. On the other hand, since, clearly,
Sn1 (n0)=., our action functionals Sn( · ) provide (though in a trivial way)
the correct asymptotics of Pc1{zT ¥ U}. Still, this example is not completly
satisfactory as a justification of our approach since the Donsker–Varadhan
lower estimates fail here only due to certain degeneracies (for instance, the
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condition H3 does not hold). Nevertheless, it shows that our lower bounds
work in some cases where Donsker–Varadhan’s do not.
To conclude this section observe that our framework enables us to

consider more general physical models where the transition probability
function are not synchronous, including models where the phase space C is
some compact subset of {0, 1}Z, i.e., some configurations are not allowed
(hard core models).

5. A DIRECT PROOF OF THEOREM 1

In this section we will study properties of the action functionals I( · )
and Ĩ( · ), and will prove Theorem 1 formulated in Section 2. As it was
already pointed out, this results could be proved by the contraction prin-
ciple from the discrete version of the general third level upper large devia-
tions bounds presented by Donsker and Varadhan in ref. 6, but we prefer
to provide here a direct proof of the upper bounds for the empirical pair
distributions.
Let us introduce some additional notations. For a given k \ 1 define

the partition

D(k)={A×B : A ¥ Lk+1, B ¥ Lk}. (5.1)

Clearly, each D(k) is a finite Borel partition of C×C. Moreover,
denote by B2 the Borel s-algebra of C×C. Then, by Assumption H2, the
family of partitions D(k) , k \ 0, generates B2.
For each m ¥M0(C×C) introduce the action functional Ĩk( · ) for a

given k \ 1 by

Ĩk(m)=Hm || mP(D(k)) (5.2)

(see the notation (3.1)), where mP ¥ M0(C×C) has been defined just after
(2.6).

Remark 5.1. Due to Assumptions H3 and H4, we can write Ĩk( · ) in
other forms, which could be helpful for some situations. For a given k \ 0
define the function qk: C×C Q [0,.) by

qk(x, y)=−ln P(x, A) (5.3)

provided x ¥ C, y ¥ A, where A ¥ Lk, and let

Lk+1={B1,..., Bn}, Lk={A1,..., Am}.
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(Clearly, the integers n, m depend on k). Then we can write for m ¥

M0(C×C),

Ĩk(m)=C
n

i=1
C
m

j=1
m(Bi×Aj) ln m(Bi×Aj)− C

n

i=1
mL(Bi) ln mL(Bi)+m(qk),

(5.4)

where m(qk)=>C qk dm. Moreover, denote by D̃k+1 the partition of C×C

generated by sets of the form Bi×C, 1 [ i [ n. Then, by (5.4),

Ĩk(m)=m(qk)+Hm(D̃k+1)−Hm(D(k))=m(qk)−Hm(D(k) | D̃k+1) (5.5)

where Hm(D1) is the entropy of a given partition D1 for a measure m,
and Hm(D1 | D2) is the conditional entropy of D1 with respect to D2 for a
measure m and for any two given partitions D1, D2.
The next proposition allows to approximate the action functional Ĩ( · )

by means of the functionals Ĩk( · ).

Proposition 5.1. For any m ¥MS,

Ĩ(m)=sup
k \ 1
Ĩk(m)= lim

kQ.
Ĩk(m)

Proof. Let B2
0 be the field generated by the family of partitions

D(k), k \ 1. Clearly, the s-algebra B2 is generated by the field B2
0, and,

therefore, for any m ¥M0(C×C), according to Lemma 2.2.3 of ref. 14, we
have

D(m || mP)=sup
k \ 1
Hm || mP(D(k))= lim

kQ.
Hm || mP(D(k)) (5.6)

which together with (5.2) and (2.11) yield the proposition. L

Now we will study the basic properties of the auxiliary functionals Ĩk.

Proposition 5.2. For each k \ 1 the functional Ĩk: M0(C×C)Q
[0,.] is non-negative, continuous with respect to the weak topology, and
convex.

Proof. It is well known, that Hm1 || m2 (D) is non-negative for any par-
tition D and any two measures m1, m2 ¥M0(C×C) (see Theorem 2.3.2 of
ref. 14, for example). Therefore, by (5.2), Ĩk(m) \ 0 for any m ¥M0(C×C).
The proof of the next two properties relies on the notations of Remark 5.1.
Observe, that since the partitions Lk, Lk+1 and D(k) are open, the indica-
tors of sets Bi×C, C×Aj and Bi×Aj, 1 [ i [ n, 1 [ j [ m, are continuous
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functions, as well as the function qk defined in (5.3). It view of formula
(5.4), this fact implies that Ĩk( · ) is continuous with respect to the weak
topology.
Now we will prove that Ĩk( · ) is convex. Let us introduce some addi-

tional notations for this purpose. First, define F: [0,.)mQ R by the
formula

F(x
¯
)=C

m

j=1
xj ln xj−1 C

m

j=1
xj 2 ln 1 C

m

j=1
xj 2 (5.7)

(where, as usual, 0 ln 0=0 and x
¯
=(x1,..., xm) ¥ [0,.)m). Next, for given

k \ 1 and m ¥M0(C×C) we will construct vectors mi=(mi, 1,..., mi, m) ¥
[0, 1]m such that mi, j=m(Bi×Aj) for 1 [ i [ n, 1 [ j [ m. Then, by (5.4),

Ĩk(m)=C
n

i=1
F(mi)+m(qk). (5.8)

Since the vectors mi , as well, as the integrals m(qk) , depend linearly on
m ¥M0(C×C), it suffices to show that F is a convex function in the entire
domain [0,.)m. To do this we will prove that the corresponding Jacoby
matrix is non-negative for any x

¯
¥ Rm such that xj > 0, 1 [ j [ m. Indeed,

for any v
¯
=(v1,..., vm) ¥ Rm by a direct computation we see that

C
m

j, l=1

“
2F

“xj “xl
vlvj=C

m

j=1

v2j
xj
−1 C

m

j=1
vj 2

2 1 C
m

j=1
xj 2

−1

=1 C
m

j=1
xj 2

−1 11 C
m

j=1
xj 21 C

m

j=1
v2jx

−1
j
2−1 C

m

j=1
vj 2

22 .

Next, by the Cauchy inequality

1 C
m

j=1
vj 2

2

=1 C
m

j=1
x 1/2j (v

2
jx
−1
j )

1/222 [ 1 C
m

j=1
xj 21 C

m

j=1
v2jx

−1
j
2 ,

and so

C
m

k, l=1

“
2F

“xl “xk
vlvk \ 0

proving the fact that F is a convex function in the domain xj > 0,
1 [ j [ m. Finally, since F is a continuous function for all x

¯
¥ [0,.)m,

including the boundary points, we conclude, that F is convex in the entire
domain [0,.)m, completing the proof of the proposition. L
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Corollary 5.3. Ĩ: M0(C×C)Q [0,.] is a non-negative convex
lower semi-continuous functional.

Proof. This follows immediately by the last proposition combined
with Proposition 5.1. L

This result gives the statement (a) of Theorem 1 and our proof of the
statement (b) there is based on the following simple propositions.

Proposition 5.4. For a given k \ 1 let aij be a matrix such that
;m
j=1 aij=1 and aij > 0 for each 1 [ i [ n, 1 [ j [ m with n and m defined
in (5.4). Introduce fk: C×C Q R by the formula

fk(x, y)=ln aij+qk(x, y) (5.9)

provided x ¥ Bi, y ¥ Aj, Bi×Aj ¥ D(k) with qk defined in (5.3). Then for any
T \ 1, c ¥ C,

Ec exp(Tfk(YT))=1. (5.10)

Proof. By (2.7) for any T \ 2,

Ec exp (Tfk(YT))=Ec exp 1 C
T−1

i=0
fk(Xt, Xt+1)2

=Ec exp 1 C
T−2

i=0
fk(Xt, Xt+1)2 exp(fk(XT−1, XT))

=Ec exp 1 C
T−2

i=0
fk(Xt, Xt+1)2 EXT−1 exp(fk(XT−1, XT)).

(5.11)

However, for each x ¥ C we have by the definition of fk and aij that

Ex exp(fk(x, X1))=C
m

j=1
P(x, Aj)

aij

P(x, Aj)
=1 (5.12)

(here 1 [ i [ n is such that x ¥ Bi), which together with (5.11) implies that
for any T \ 2,

Ec exp(Tfk(YT))=Ec exp((T−1) fk(YT−1))=· · ·=1

and (5.10) follows. L
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Next, we introduce few additional notations (for a fixed k \ 1). First
of all, set pij=P(x, Aj) provided x ¥ Bi, which is well defined by H4. Next,
for a given measure m ¥Ms set

m̃ij=
m(Bi×Aj)

mL(Bi)
(5.13)

if mL(Bi) ] 0. If mL(Bi)=0, we can define m̃ij arbitrarily, but it is convenient
in this case to set m̃ij=pij. Denote fm(x, y)=ln(

m̃ij
pij
) for x ¥ Bi, y ¥ Aj, then

by (5.13) and the definition of Ĩk(m) (see (5.4)),

Ĩk(m)=m(fm)= C
1 [ i [ n, 1 [ j [ m

m(Bi×Aj) ln 1
m̃ij

pij
2 (5.14)

(as usual, we set 0 ln 0=0, and, therefore all parts of the last equality are
well defined). Observe, that fm is not, in general, a continuous function
(since m̃ij can vanish). For this reason, we will define for the latter use the
functions fm, d: C×C Q R (for any given d > 0) by the formula

fm, d(x, y)=ln 1
dpij+(1−d) m̃ij

pij
2 (5.15)

for x ¥ Bi, y ¥ Aj. Observe, that since the logarithmic function is concave
we have that for each x, y ¥ C,

fm, d(x, y) \ (1−d) ln 1 m̃ij
pij
2=(1−d) fm(x, y) (5.16)

and, therefore, by (5.14),

m(fm, d) \ (1−d) Ĩk(m). (5.17)

Next, we will need

Proposition 5.5. For each m ¥MS such that Ĩ(m) <. and each
e > 0 there exists an open neighborhood U(m, e) of m such that

Pc{YT ¥ U(m, e)} [ exp(−T(Ĩ(m)− e)) (5.18)

for any T \ 1 and c ¥ C.
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Proof. If Ĩ(m)=0, there is nothing to prove. Otherwise, for a given
e > 0 we can choose, according to Proposition 5.1, an integer k=k(m, e)
large enough such that

Ĩk(m) \ Ĩ(m)−
e

3
> 0. (5.19)

Next, take d= e

3Ĩk(m)
in the definition of fm, d (see (5.15)). Then, by (5.17) and

(5.19),

m(fm, d) \ Ĩk(m)−
e

3
> Ĩ(m)−

2e
3
. (5.20)

Since fm, d ¥ C(C×C), define the open neighborhood U(m, e) of m by

U(m, e)=3mŒ ¥M0(C×C) : mŒ(fm, d) > m(fm, d)−
e

4
4 . (5.21)

Observe, that if mŒ ¥ U(m, e), then by (5.20),

mŒ(fm, d) > Ĩ(m)− e. (5.22)

Consequently, for any c ¥ C, T \ 1, by (5.22) and Chebyshev’s inequality,

Pc{YT ¥ U(m, e)} [ Pc{YT(fm, d) > Ĩ(m)− e}

=Pc{exp(T YT(fm, d)) \ exp(T(Ĩ(m)− e))}

[ exp(−T(Ĩ(m)− e)) Ec exp(TYT(fm, d)). (5.23)

But the function fm, d satisfies the conditions of Proposition 5.4 and,
therefore,

Ec exp(T YT(fm, d))=1,

which together with (5.23) prove the statement of the proposition. L

Observe, that if Ĩ(m)=. then essentially the same proof shows that
for any C > 0 there exists an open neighborhood U(m, C) of m such that for
any c ¥ C and T large enough,

Pc{YT ¥ U(m, C)} [ exp(−TC). (5.24)

In particular, if m ¥MS, the estimate (5.24) follows by Proposition 2.1.
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Next, we can complete the proof of Theorem 1. Let

I0=inf{Ĩ(m): m ¥K}.

Then, by Proposition 5.5 and the last observation, for each m ¥K and e > 0
there exists an open neighborhood U(m, e) of m and a number T(m) > 0
such that for any c ¥ C,

Pc{YT ¥ U(m, e)} [ exp(−(I0− e) T) (5.25)

provided T \ T(m) with T(m)=1 when m ¥MS. Since K is a compact we
can find a finite set of measures mi, 1 [ i [ l, such that

K … 0
l

i=1
U(mi, e).

Now, by (5.25) we have

Pc{YT ¥K} [ C
l

i=1
Pc{YT ¥ U(mi, e)} [ l exp(−(I0− e) T) (5.26)

for T large enough, and therefore,

lim sup
TQ.

ln Pc{YT ¥K}
T

[ −(I0− e).

Since e > 0 can be taken arbitrary small, the last estimate proves the
statement. Finally, observe that the statement (c) of Theorem 1 follows
immediately by Lemma 5.2.1 of ref. 14.
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